Friday, October 21, 2011

Interfacing Haskell to the Concorde solver for Traveling Salesperson Problem

The Traveling Salesperson Problem (TSP) is a famous optimization problem with applications in logistics, manufacturing, and art. In its planar form, we are given a set of "cities", and we want to visit each city while minimizing the total travel distance.

Finding the shortest possible tour is NP-hard, and quickly becomes infeasible as the number of cities grows. But most applications need only a heuristically good solution: a tour which is short, if not the shortest possible. The Lin-Kernighan heuristic quickly produces such tours.

The Concorde project provides a well-regarded collection of TSP solvers. I needed TSP heuristics for a Haskell project, so I wrote a Haskell interface to Concorde's Lin-Kernighan implementation. Concorde provides a C library, but it's far from clear how to use it. Instead I chose to invoke the linkern executable as a subprocess.

The core of the Haskell interface looks like this:

:: Config -- provides various configurable parameters
-> (a -> R2) -- gives the rectangular coordinates of each point
-> [a] -- list of points to visit
-> IO [a] -- produces points permuted in tour order

tsp lets you represent the points to visit using any type you like. You just provide a function to get the coordinates of each point. The Config parameter controls various aspects of the computation, including the time/quality tradeoff. Defaults are provided, and you can override these selectively using record-update syntax. All considered it's a pretty simple interface which tries to hide the complexity of interacting with an external program.

Visualizing a tour

Here's a example program which computes a tour of 1,000 random points. We'll visualize the tour using the Diagrams library.

import Diagrams.Prelude
( Diagram , Point(P), fillColor , lineWidth
, translate, circle , fromVertices, lightgrey )

import Diagrams.Backend.Cairo.CmdLine
( Cairo, defaultMain )

import Data.Colour.SRGB ( sRGB )
import Data.Colour.RGBSpace ( uncurryRGB )
import Data.Colour.RGBSpace.HSV ( hsv )

import qualified Algorithms.Concorde.LinKern as T

import Control.Monad
import Data.Monoid
import System.Random

tsp takes a list of points and a function to extract the coordinates of a point. Our points are just the coordinates themselves, so we pass the identity function.

type R2 = (Double, Double)

findTour :: [R2] -> IO [R2]
findTour = T.tsp cfg id where
cfg = T.defConfig { T.verbose = True }

The tour is drawn as a loop of line segements. We also shade the interior of this polygon.

diaTour :: [R2] -> Diagram Cairo R2
diaTour xs@(x:_) = sty . fromVertices $ map P (xs ++ [x]) where
sty = fillColor lightgrey . lineWidth 10

Each point visited by the tour is drawn as a circle, with hue indicating its position in the tour.

diaPoints :: [R2] -> Diagram Cairo R2
diaPoints = mconcat . map circ . zip [0..] where
n = fromIntegral numPoints
circ (i,p) = translate p . fillColor color $ circle 40
where color = uncurryRGB sRGB (hsv (360*i/n) 1 1)

Now we put it all together. Note that linkern uses Euclidean distances rounded to the nearest integer. So we need coordinates with fairly large magnitudes. Picking values between 0 and 1 won't work.

numPoints :: Int
numPoints = 1000

main :: IO ()
main = do
let rnd = randomRIO (0,10000)
points <- replicateM numPoints (liftM2 (,) rnd rnd)
tour <- findTour points
defaultMain (diaPoints tour `mappend` diaTour tour)

We run it like so:

$ export PATH=~/concorde-031219/LINKERN:$PATH
$ runhaskell tour.lhs -o out.pdf
$ xpdf out.pdf

The computation takes about 2 seconds on my machine. And the output looks like this:

You can download this post as a Literate Haskell file and run the above program. You'll need to install the concorde and diagrams packages.

The source for the concorde Haskell package includes a more full-featured version of this example.


  1. Nice article, thanks for the information. It's very complete information. I will bookmark for next reference
    jaring futsal | jaring golf | jaring pengaman proyek |
    jaring pengaman bangunan | jaring pengaman gedung

  2. شركة نورالعمران بحفرالباطن
    شركة مكافحة حشرات بحفرالباطن افضل شركة مكافحة حشرات بحفرالباطن افضل شركة مكافحة وابادة الصراصير والقوارض والنمل الابيض والعتة والوزغ والنمل الاسود والفيران بحفرالباطن

  3. 0530921151
    منسقة ومتعهدة صبابات قهوة الضيافة ،متعهدة افراح ومناسبات بحفرالباطن والمنطقة الشرقية متعهدة تصوير حفلات الزفاف بحفرالباطن متعهدة مناسبات وافراح واعراس بحفرالباطن متعهدة كوش ومداخل بحفرالباطن متعهدة تصوير حفلات الزفاف بحفرالباطن متعهدة مناسبات واعياد وحفلات الزواج والمناسبات بحفرالباطن

  4. من خلال التواصل مع موقع مكتبتك يمكنك الحصول علي العديد من الانواع المختلفة للتقنيات منها خدمة توفير المراجع التي يدعم بها الباحثين ابحاثهم كما يتواجد ايضا خدمة اعداد الاطار النظري للبحث العلمي

  5. الحشرات من الأشياء التي ينزعج العديد على إثرها وايضاًً هي شيء يسبب الرهاب للكثير وهي من اهم الأشياء التي ينتج عن وجودها خسائر كثيرة، وعلل تواجدها أسباب كثيرة كالمكان والنظافة وأحوال المناخ والطقس فالحشرات تتغير وفق درجة السخونةشركة مكافحة حشرات بالطائف
    شركة رش مبيدات بالطائف
    المبيدات الحشرية الكيميائية
    شركة الانوار لرش المبيدات